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Aht~~f: Compounds 3, the C/D ring moiety of paclitaxel without a 7-hydroxyl group, and 4, the 
C ring moiety of 0-cinnamoyltaxicin-I (2), were synthesized stereoselectively from methyl (E,S)-3- 
(2,2-dimethyl-l,3-dioxolan-4-yl)-2-pentenoate (5) using the fragmentation reaction of bicyclo[2.2.2]- 
octane derivative 9 as a key step to give 10. 0 1997 Elsevier Science Ltd. 

Ta.xol@ (paclitaxel) (l), a typical taxane diterpene, is one of the most attractive synthetic targets in organic 

chemistry because of its unique structural features, as well as its antileukemic and tumor-inhibiting activity.* 

Recently, we described a useful intramolecular nitrile oxide cyclization reaction for construction of the taxane 

A/B ring system.3 In connection with our synthetic studies on the taxane class of diterpenes, such as 1 and O- 

cinnamoyltaxicin-I (2), by applying this cyclization, we acquire efficient access to highly functionalized 

cyclohexane derivatives corresponding to the C ring system of target molecules.4 In this communication, we 

would like to report a stereocontrolled synthesis of 3 (Y=H) and 4 which involves the fragmentation reaction of 

bicyclo[2.2.2]octane derivative 9 as a crucial step to give 10. 

paclltflxel (1) Dclnnamoyltaxicin-l (2) 

Optically active bicyclo[2.2.2]octane derivative 7,s prepared by diastereoselective sequential Michael 

reaction of the kinetic enolate of enone 6 with a&unsaturated ester 5 readily available from D-mannitol, was 

chosen as the starting material, since it provides the requisite three chiral centers (C-2, C-3 and C-8) in 1 and 2. 
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Keto ester 7 was converted into keto mesylate 8 by a five-step sequence in 54% overall yield: i) LiAIH4 

reduction giving the corresponding diol; ii) selective benzylation of the primary hydroxyl group; iii) PCC 

oxidation of the secondary hydroxyl group; iv) selective deprotection of the methoxymethyl (MOM) group; and 

v) mesylation of the resulting tertiary hydroxyl group (Scheme 1). Hydroxy mesylate 9, the precursor of the 

fragmentation reaction, was obtained by NaBH4 reduction of 8 as a single isomer. Cleavage of the C-C bond a 

was conducted by treatment of 9 with 1.5 equiv, of t-BuOK in t-BuOH for lh at 25°C to give pentasubstituted 

cyclohexane 10, which was then reduced with NaBH4 in MeOH to obtain alcohol 11 ([Ct]D 25 +10.4" (c 1.2, 

CHC13)) 6 in 76% overall yield from 8. After some attempts to obtain this compound more conveniently, it was 

found that 11 was synthesized from 8 in the following one-pot process which involves a sequential reduction- 

fragmentation-reduction reaction. To a cold (0°C) solution of keto mesylate 8 in MeOH was added 2.0 equiv, of 

NaBH4. After 5 min, DMSO and 1.5 equiv, of t-BuOK were added, and the mixture was stirred for 10 min at 

25°C to furnish U in 93% yield. 

With the desired pentasubstituted cyclopentane derivative in hand, functionalization of the C ring was 
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Reagents: A. 1) LiAIH 4, THF, rt, 2) BnBr, Nail, THF-DMF (3:1), 0°C, 3) PCC, 4AMs, rt, 4) TsOH, acetone-H20 
(99:1), rt, 5) MsCI, pyrldine, rt, 54% (5 steps); B. NaBH4, MeOH, 0°C, 96%; C. t-BuOK, t-BuOH, rt, 81%; D. 
NaBH4, MeOH, 0°C, 98%; E. NaBH4, t-BuOK, MeOH-DMSO, 93%; F. 1) SEMCI, ,CPr2NEt, 2) OsO4, NMO, CH3CN- 
H20 (3:1), then NalO4, sat.NaHCO3, 0°C, 76% (2 steps); G. L*Selectride, THF, -78°C, 98%; H. 1) Na, NH3-EtOH 
(3-1), -34°C, 2) PhSSPh, Bu3P, pyridine, 60°C, 81% (2 steps); I. 1) MCPBA, CH2CI2, -78°C, 2) /-Pr2NEt, o-dichloro- 
benzene, 180°C, 83% (2 steps); J. cinnamoyl chloride, pyridine, 20°C, 92%. 
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conducted. Protection of the hydroxyl group in 11 as the 2-(trimethylsilyl)ethyloxymethyl (SEM) ether, 

followed by oxidative cleavage of exo-olefin gave ketone 12. Alcohol 13 having the desired 5or-hydroxyl 

group 7 was obtained by reduction of 12 with L-selectride in THF at -78°C in 98% yield as a single isomer, 

whereas NaBH4 reduction of 12 in MeOH gave a 1:1.5 mixture of 13 and the corresponding c(-hydroxyl 

isomer and Na-liquid ammonia reduction of 12 gave 51~-alcohol 14 exclusively. The configuration of the 

hydroxyl group generated at C-5 in 13 and 14 was determined by comparison of the coupling constants in IH- 

NMR of the C-5 proton (4.7 ppm, q, J=2.7 Hz) in carbonate 17 derived from 13 with that (4.1 ppm, td, 

J=l  1.0, 4.9 Hz) in carbonate 18 derived from 14. 
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Reagents: A. 1) Li, liq. NH3-EtOH (3:1 ), -78°C; 2) carbodiimidazole, Nail, THF-DM F (3:1 ), 25°C, 59% (2 steps); 
B. carbodiimidazole, THF, 50°C, 63%. 

Construction of the C ring system 4 from 13 via formation of the exo-olefin and esterification of the 

secondary hydroxyl group was accomplished as follows. Removal of benzyl ether from 13 by Na-liquid 

ammonia reduction, followed by selective phenylsulfination of the primary hydroxyl group with phenyl disulfide 

and tributylphosphine in pyridine at 60°C gave 15. Oxidation of the sulfide with m-chloroperbenzoic acid at 

-78"C and subsequent pyrolysis at 1800C in the presence of N,N-diisopropylethyl amine yielded 16, whose 

secondary hydroxyl group was acylated by treatment with cinnamoyl chloride in pyridine to give 4 ([(ZIp 25 

+41.3" (c 0.8, CHCI3)) 8 in 62% overall yield. 

Compound 3 bearing an oxetane moiety, corresponding to the D ring in paclitaxel, was synthesized from 16 

via mesylate 20 (Scheme 2). Mesylation of the allylic hydroxyl group in 16, followed by oxidation of the exo- 

olefin with OsO4 and pyridine in Et20 gave 20 having the desired 13-oriented hydroxymethyl group at C-4 in 57 

% yield as a single isomer. The configuration of the newly introduced hydroxymethyl group was confirmed by 

NOE correlation between the methyl proton at C-17 and the methylene proton at C-16. The observed 

stereochemical outcome of the dihydroxylation reaction can be rationalized on the basis of the preferred 

conformation 19 of allyl mesylate 19, in which the 1,3-dioxolan group covers the 13-face of the olefin moiety. 

Finally, treatment of mesylate 20 with 1,5-diazabicyclo[4.3.0]non-5-ene in DME for 1.5 h at 85"C gave oxetane 

3 ([(X]D 25 +10.0 (c 0.70, CHC13)). II 
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Reagents: A. MsCI, DMAP, pyridine, rt; B. 0504, pyridine, Et20, 2b 57% (2 steps); C. DBN, DME, 85°C, 78%. 



5000 

In summary, the taxane precursors 4 (C ring system of O-cinnamoyltaxicin-I) and 3 (C/D ring system of 

paclitaxel without a C-7 hydroxyl group) were synthesized stereoselectively from methyl (E,S)-3-(2,2-dimethyl- 

1,3-dioxolan-4-yl)-2-pentenoate (5) using the sequential reduction-fragmentation-reduction reaction of  keto 

mesylate 8. We are currently investigating the total synthesis of O-cinnamoyltaxicin-I and 7-dehydroxy- 

paclitaxel by use of 4 and 3, respectively, in this laboratory. 
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